
Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral
Interface (SPI)

23
HIGHLIGHTS
This section of the manual contains the following topics:

23.1 Introduction.. 23-2
23.2 Status and Control Registers ... 23-5
23.3 Modes of Operation ... 23-13
23.4 Interrupts.. 23-29
23.5 Operation in Power-Saving and Debug Modes ... 23-32
23.6 Effects of Various Resets... 23-34
23.7 Peripherals Using SPI Modules... 23-34
23.8 Design Tips.. 23-35
23.9 Related Application Notes ... 23-36
23.10 Revision History... 23-37
© 2009 Microchip Technology Inc. DS61106F-page 23-1

PIC32MX Family Reference Manual
23.1 INTRODUCTION
The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for
communicating with external peripherals and other microcontroller devices. These peripheral
devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The
PIC32MX family SPI module is compatible with Motorola® SPI and SIOP interfaces.

The following are some of the key features of this module:

• Master and Slave modes support
• Four different clock formats
• Framed SPI protocol support
• Standard and Enhanced Buffering modes (Enhanced buffering mode is not available on all

devices)
• User configurable 8-bit, 16-bit, and 32-bit data width
• SPI receive and transmitt buffers are FIFO buffers which are 4/8/16 deep in Enhanced

Buffering mode
• Separate SPI shift registers for receive and transmit
• Programmable interrupt event on every 8-bit, 16-bit, and 32-bit data transfer

23.1.1 Normal Mode SPI Operation
In Normal mode operation, the SPI Master controls the generation of the serial clock. The
number of output clock pulses corresponds to the transfer data width: 8, 16, or 32 bits.
Figures 23-1 and 23-2 illustrate SPI Master-to-Slave and Slave-to-Master device connections.

Figure 23-1: Typical SPI Master-to-Slave Device Connection Diagram

Table 23-1: SPI Features

Available
SPI Modes

SPI
Master

SPI
Slave

Frame
Master

Frame
Slave

8-Bit,
16-Bit,

and
32-Bit
Modes

Selectable
Clock
Pulses

and Edges

Selectable
Frame
Sync

Pulses
and Edges

Slave
Select
Pulse

Normal Mode Yes Yes — — Yes Yes — Yes
Framed Mode Yes Yes Yes Yes Yes Yes Yes No

SDOx

SDIx

PIC32MX

Serial Clock

Note 1: In Normal mode, the usage of the Slave Select pin (SSx) is optional.
2: Control of the SDO pin can be disabled for Receive-Only modes.

GPIO/SSx

SCKx

Slave Select(1)

SDIx

SDOx(2)

PROCESSOR 2

SSx

SCKx

[SPI Master] [Slave]
DS61106F-page 23-2 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
Figure 23-2: Typical SPI Slave-to-Master Device Connection Diagram

23.1.2 Framed Mode SPI Operation
In Framed mode operation, the Frame Master controls the generation of the frame
synchronization pulse. The SPI clock is still generated by the SPI Master and is continuously
running. Figures 23-3 and 23-4 illustrate SPI Frame Master and Frame Slave device
connections.

Figure 23-3: Typical SPI Master, Frame Master Connection Diagram

Figure 23-4: Typical SPI Master, Frame Slave Connection Diagram

SDOx(2)

SDIx

PIC32MX

Serial Clock

Note 1: In Normal mode, the usage of the Slave Select pin (SSx) is optional.
2: The control of the SDO pin can be disabled for Receive-Only modes.

SSx

SCKx

Slave Select(1)

SDIx

SDOx

PROCESSOR 2

SSx/GPIO

SCKx

[SPI Slave] [Master]

SDOx

SDIx

PIC32MX

Serial Clock

Note 1: In Framed SPI mode, the SSx pin is used to transmit/receive the frame synchronization pulse.
2: Framed SPI mode requires the use of all four pins (i.e., using the SSx pin is not optional).

SSx

SCKx

Frame Sync.
Pulse(1, 2)

SDIx

SDOx

PROCESSOR 2

SSx

SCKx

[SPI Master, Frame Master] [SPI Slave, Frame Slave]

SDOx

SDIx

Serial Clock

Note 1: In Framed SPI mode, the SSx pin is used to transmit/receive the frame synchronization pulse.
2: Framed SPI mode requires the use of all four pins (i.e., using the SSx pin is not optional).

SSx

SCKx

Frame Sync.

SDIx

SDOx

SSx

SCKx

PIC32MX
[SPI Master, Frame Slave]

PROCESSOR 2
[SPI Slave, Frame Master]

Pulse(1, 2)
© 2009 Microchip Technology Inc. DS61106F-page 23-3

PIC32MX Family Reference Manual
Figure 23-5: SPI Module Block Diagram

Internal
Data Bus

SDIx

SDOx

SSx/FSYNC

SCKx

SPIxSR

bit 0

Shift
Control

Edge
Select

Enable Master Clock

Baud Rate

Slave Select

 Sync Control

Clock
Control

Transmit

SPIxRXB(1)

Receive

 and Frame

Note 1: The SPIxRXB and SPIxTXB registers are accessed via the SPIxBUF register and are multi-element FIFO
buffers in Enhanced Buffer mode. Enhanced Buffer mode is not available on all devices. Refer to the specific
device data sheet for availability.

Registers share address SPIxBUF

SPIxBUF

Generator PBCLK

WriteRead

SPIxTXB(1)
DS61106F-page 23-4 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.2 STATUS AND CONTROL REGISTERS

The SPI module consists of the following Special Function Registers (SFRs):

• SPIxCON: SPI Control Register for the Module ‘x’
• SPIxSTAT: SPI Status Register for the Module ‘x’
• SPIxBUF: SPI Transmit and Receive Buffer Register for the Module ‘x’
• SPIxBRG: SPI Baud Rate Generator Register for the Module ‘x’

Each SPI module also has the following associated bits for interrupt control:

• SPIxRXIF, SPIxTXIF, SPIxEIF: Interrupt Flag Status Bits for Receive, Transmit, and Error
Events

• SPIxRXIE, SPIxTXIE, SPIxEIE: Interrupt Enable Control Bits for Receive, Transmit, and
Error Events

• SPIxIP<2:0>: Interrupt Priority Control bits
• SPIxIS<1:0>: Interrupt Subpriority Control bits

Table 23-2 summarizes all SPI-related registers. Corresponding registers appear after the
summary, followed by a detailed description of each register.

Note: Each PIC32MX family device variant may have one or more SPI modules. An ‘x’
used in the names of pins, control/Status bits, and registers denotes the particular
module. Refer to the specific device data sheets for more details.

Table 23-2: SPI SFR Summary

Name Address
Offset

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

SPIxCON(1,2,3) 0x000 31:24 FRMEN FRMSYNC FRMPOL MSSEN(4) FRMSYPW(4) FRMCNT<2:0>(4)

23:16 — — — — — — SPIFE ENHBUF(4)

15:8 ON FRZ SIDL DISSDO MODE32 MODE16 SMP CKE

7:0 SSEN CKP MSTEN — STXISEL<1:0>(4) SRXISEL<1:0>(4)

SPIxSTAT(2) 0x0010 31:24 — — — RXBUFELM<4:0>(4)

23:16 — — — TXBUFELM<4:0>(4)

15:8 — — — — SPIBUSY — — SPITUR

7:0 SRMT(4) SPIROV SPIRBE(4) — SPITBE — SPITBF(4) SPIRBF

SPIxBUF 0x0020 31:24 DATA<31:24>

23:16 DATA<23:16>

15:8 DATA<15:8>

7:0 DATA<7:0>

SPIxBRG(1,2,3) 0x0030 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 — — — — — — — BRG<8>

7:0 BRG<7:0>

Legend: — = unimplemented, read as ‘0’. Address offset values are shown in hexadecimal.
Note 1: This register has an associated Clear register at an offset of 0x4 bytes. These registers have the same name with CLR appended to the

end of the register name (e.g., SPIxCONCLR). Writing a ‘1’ to any bit position in the Clear register will clear valid bits in the associated reg-
ister. Reads from the Clear register should be ignored.

2: This register has an associated Set register at an offset of 0x8 bytes. These registers have the same name with SET appended to the end
of the register name (e.g., SPIxCONSET). Writing a ‘1’ to any bit position in the Set register will set valid bits in the associated register.
Reads from the Set register should be ignored.

3: This register has an associated Invert register at an offset of 0xC bytes. These registers have the same name with INV appended to the
end of the register name (e.g., SPIxCONINV). Writing a ‘1’ to any bit position in the Invert register will invert valid bits in the associated
register. Reads from the Invert register should be ignored.

4: This bit is not available on all devices. Refer to the specific device data sheet for details.
© 2009 Microchip Technology Inc. DS61106F-page 23-5

PIC32MX Family Reference Manual
Register 23-1: SPIxCON: SPI Control Register(1,2,3)
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

FRMEN FRMSYNC FRMPOL MSSEN(4) FRMSYPW(4) FRMCNT<2:0>(4)

bit 31 bit 24

r-x r-x r-x r-x r-x r-x R/W-0 R/W-0
— — — — — — SPIFE ENHBUF(4)

bit 23 bit 16

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
ON FRZ SIDL DISSDO MODE32 MODE16 SMP CKE

bit 15 bit 8

R/W-0 R/W-0 R/W-0 r-x R/W-0 R/W-0 R/W-0 R/W-0
SSEN CKP MSTEN — STXISEL<1:0>(4) SRXISEL<1:0>(4)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31 FRMEN: Framed SPI Support bit
1 = Framed SPI support is enabled (SSx pin used as FSYNC input/output)
0 = Framed SPI support is disabled

bit 30 FRMSYNC: Frame Sync Pulse Direction Control on SSx pin bit (Framed SPI mode only)
1 = Frame sync pulse input (Slave mode)
0 = Frame sync pulse output (Master mode)

bit 29 FRMPOL: Frame Sync Polarity bit (Framed SPI mode only)
1 = Frame pulse is active-high
0 = Frame pulse is active-low

bit 28 MSSEN: Master Mode Slave Select Enable bit(4)

1 = Slave select SPI support enabled. The SS pin is automatically driven during transmission in Master
mode. Polarity is determined by the FRMPOL bit.

0 = Slave select SPI support is disabled.
bit 27 FRMSYPW: Frame Sync Pulse Width bit(4)

1 = Frame sync pulse is one character wide
0 = Frame sync pulse is one clock wide

Note 1: This register has an associated Clear register (SPIxCONCLR) at an offset of 0x4 bytes. Writing a ‘1’ to any
bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register
should be ignored.

2: This register has an associated Set register (SPIxCONSET) at an offset of 0x8 bytes. Writing a ‘1’ to any
bit position in the Set register will set valid bits in the associated register. Reads from the Set register
should be ignored.

3: This register has an associated Invert register (SPIxCONINV) at an offset of 0xC bytes. Writing a ‘1’ to any
bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert register
should be ignored.

4: These bits are not available on all devices. Refer to the specific device data sheet for availability.
DS61106F-page 23-6 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
bit 26-24 FRMCNT<2:0>: Frame Sync Pulse Counter bits. Controls the number of data characters transmitted
per pulse.(4)

111 = Reserved; do not use
110 = Reserved; do not use
101 = Generate a frame sync pulse on every 32 data characters
100 = Generate a frame sync pulse on every 16 data characters
011 = Generate a frame sync pulse on every 8 data characters
010 = Generate a frame sync pulse on every 4 data characters
001 = Generate a frame sync pulse on every 2 data characters
000 = Generate a frame sync pulse on every data character

Note: This bit is only valid in FRAMED_SYNC mode.
bit 23-18 Reserved: Write ‘0’; ignore read
bit 17 SPIFE: Frame Sync Pulse Edge Select bit (Framed SPI mode only)

1 = Frame synchronization pulse coincides with the first bit clock
0 = Frame synchronization pulse precedes the first bit clock

bit 16 ENHBUF: Enhanced Buffer Enable bit(4)

1 = Enhanced Buffer mode is enabled
0 = Enhanced Buffer mode is disabled

Note: This bit can only be written when the ON bit = 0.
bit 15 ON: SPI Peripheral On bit

1 = SPI Peripheral is enabled
0 = SPI Peripheral is disabled

Note: When using the 1:1 PBCLK divisor, the user’s software should not read or write the
peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the
module’s ON bit.

bit 14 FRZ: Freeze in Debug Exception Mode bit
1 = Freeze operation when CPU enters Debug Exception mode
0 = Continue operation when CPU enters Debug Exception mode

Note: FRZ is writable in Debug Exception mode only, it is forced to ‘0’ in Normal mode.
bit 13 SIDL: Stop in Idle Mode bit

1 = Discontinue operation when CPU enters in Idle mode
0 = Continue operation in Idle mode

bit 12 DISSDO: Disable SDOx pin bit
1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register
0 = SDOx pin is controlled by the module

bit 11-10 MODE<32,16>: 32/16-Bit Communication Select bits
1x = 32-bit data width
01 = 16-bit data width
00 = 8-bit data width

Register 23-1: SPIxCON: SPI Control Register(1,2,3) (Continued)

Note 1: This register has an associated Clear register (SPIxCONCLR) at an offset of 0x4 bytes. Writing a ‘1’ to any
bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register
should be ignored.

2: This register has an associated Set register (SPIxCONSET) at an offset of 0x8 bytes. Writing a ‘1’ to any
bit position in the Set register will set valid bits in the associated register. Reads from the Set register
should be ignored.

3: This register has an associated Invert register (SPIxCONINV) at an offset of 0xC bytes. Writing a ‘1’ to any
bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert register
should be ignored.

4: These bits are not available on all devices. Refer to the specific device data sheet for availability.
© 2009 Microchip Technology Inc. DS61106F-page 23-7

PIC32MX Family Reference Manual
bit 9 SMP: SPI Data Input Sample Phase bit
Master mode (MSTEN = 1):
1 = Input data sampled at end of data output time
0 = Input data sampled at middle of data output time
Slave mode (MSTEN = 0):
SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.

bit 8 CKE: SPI Clock Edge Select bit
1 = Serial output data changes on transition from active clock state to Idle clock state (see CKP bit)
0 = Serial output data changes on transition from Idle clock state to active clock state (see CKP bit)

Note: The CKE bit is not used in the Framed SPI mode. The user should program this bit to ‘0’
for the Framed SPI mode (FRMEN = 1).

bit 7 SSEN: Slave Select Enable (Slave mode) bit
1 = SSx pin used for Slave mode
0 = SSx pin not used for Slave mode, pin controlled by port function.

bit 6 CKP: Clock Polarity Select bit
1 = Idle state for clock is a high level; active state is a low level
0 = Idle state for clock is a low level; active state is a high level

bit 5 MSTEN: Master Mode Enable bit
1 = Master mode
0 = Slave mode

bit 4 Reserved: Write ‘0’; ignore read
bit 3-2 STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits(4)

11 = SPI_TBE_EVENT is set when the buffer is not full (has one or more empty elements)
10 = SPI_TBE_EVENT is set when the buffer is empty by one-half or more
01 = SPI_TBE_EVENT is set when the buffer is completely empty
00 = SPI_TBE_EVENT is set when the last transfer is shifted out of SPISR and transmit operations

are complete
bit 1-0 RTXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits(4)

11 = SPI_RBF_EVENT is set when the buffer is full
10 = SPI_RBF_EVENT is set when the buffer is full by one-half or more
01 = SPI_RBF_EVENT is set when the buffer is not empty
00 = SPI_RBF_EVENT is set when the last word in the receive buffer is read (i.e., buffer is empty)

Register 23-1: SPIxCON: SPI Control Register(1,2,3) (Continued)

Note 1: This register has an associated Clear register (SPIxCONCLR) at an offset of 0x4 bytes. Writing a ‘1’ to any
bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register
should be ignored.

2: This register has an associated Set register (SPIxCONSET) at an offset of 0x8 bytes. Writing a ‘1’ to any
bit position in the Set register will set valid bits in the associated register. Reads from the Set register
should be ignored.

3: This register has an associated Invert register (SPIxCONINV) at an offset of 0xC bytes. Writing a ‘1’ to any
bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert register
should be ignored.

4: These bits are not available on all devices. Refer to the specific device data sheet for availability.
DS61106F-page 23-8 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
Register 23-2: SPIxSTAT: SPI Status Register(1)

r-x r-x r-x R-0 R-0 R-0 R-0 R-0
— — — RXBUFELM<4:0>(2)

bit 31 bit 24

r-x r-x r-x R-0 R-0 R-0 R-0 R-0
— — — TXBUFELM<4:0>(2)

bit 23 bit 16

r-x r-x r-x r-x R-0 r-x r-x R-0
— — — — SPIBUSY — — SPITUR(2)

bit 15 bit 8

R-0 R/W-0 R-0 r-x R-1 r-x R-0 R-0
SRMT(2) SPIROV SPIRBE(2) — SPITBE — SPITBF(2) SPIRBF

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-29 Reserved: Write ‘0’; ignore read
bit 28-24 RXBUFELM<4:0>: Receive Buffer Element Count bits (valid only when ENHBUF = 1)(2)

Reflects the value mod (SWPTR - CRPTR) taking into account empty and full conditions.
bit 23-21 Reserved: Write ‘0’; ignore read
bit 20-16 TXBUFELM<4:0>: Transmit Buffer Element Count bits (valid only when ENHBUF = 1)(2)

Reflects the value mod (CWPTR - SRPTR) taking into account empty and full conditions.
bit 15-12 Reserved: Write ‘0’; ignore read
bit 11 SPIBUSY: SPI Activity Status bit

1 = SPI peripheral is currently busy with some transactions
0 = SPI peripheral is currently idle

bit 10-9 Reserved: Write ‘0’; ignore read
bit 8 SPITUR: Transmit Under Run bit(2)

1 = Transmit buffer has encountered an underrun condition
0 = Transmit buffer has no underrun condition
This bit is only valid in Framed Sync mode; the underrun condition must be cleared by
disabling/re-enabling the module.

bit 7 SRMT: Shift Register Empty bit (valid only when ENHBUF = 1)(2)

1 = When RX_READY = 1
0 = When RX_READY = 0

bit 6 SPIROV: Receive Overflow Flag bit
1 = A new data is completely received and discarded. The user software has not read the previous

data in the SPIxBUF register.
0 = No overflow has occurred
This bit is set in hardware; can only be cleared (= 0) in software.

Note 1: This register has an associated Clear register (SPIxSTATCLR) at an offset of 0x4 bytes. Writing a ‘1’ to
any bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear
register should be ignored.

2: These bits are not available on all devices. Refer to the specific device data sheet for availability.
© 2009 Microchip Technology Inc. DS61106F-page 23-9

PIC32MX Family Reference Manual
bit 5 SPIRBE: RX FIFO Empty bit (valid only when ENHBUF = 1)
1 = RX FIFO is empty (CRPTR = SWPTR)
0 = RX FIFO is not empty (CRPTR ≠ SWPTR)

bit 4 Reserved: Write ‘0’; ignore read
bit 3 SPITBE: SPI Transmit Buffer Empty Status bit(2)

1 = Transmit buffer, SPIxTXB is empty
0 = Transmit buffer, SPIxTXB is not empty
Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR.
Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.

bit 2 Reserved: Write ‘0’; ignore read
bit 1 SPITBF: SPI Transmit Buffer Full Status bit(2)

1 = Transmit not yet started, SPITXB is full
0 = Transmit buffer is not full
Standard Buffer Mode:
Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB.
Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.
Enhanced Buffer Mode:
Set when CWPTR + 1 = SRPTR; cleared otherwise

bit 0 SPIRBF: SPI Receive Buffer Full Status bit
1 = Receive buffer, SPIxRXB is full
0 = Receive buffer, SPIxRXB is not full
Standard Buffer Mode:
Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB.
Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.
Enhanced Buffer Mode:
Set when SWPTR + 1 = CRPTR; cleared otherwise

Register 23-2: SPIxSTAT: SPI Status Register(1)

Note 1: This register has an associated Clear register (SPIxSTATCLR) at an offset of 0x4 bytes. Writing a ‘1’ to
any bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear
register should be ignored.

2: These bits are not available on all devices. Refer to the specific device data sheet for availability.
DS61106F-page 23-10 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
Register 23-3: SPIxBUF: SPI Buffer Register
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<31:24>
bit 31 bit 24

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA<23:16>

bit 23 bit 16

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-0 DATA<31:0>: SPI Transmit/Receive Buffer register
Serves as a memory-mapped value of Transmit (SPIxTXB) and Receive (SPIxSR) registers.

When 32-Bit Data mode is enabled (MODE<32,16> (SPIxCON<11:10>) = 1x):

All 32-bits (SPIxBUF<31:0>) of this register are used to form a 32-bit character.

When 16-Bit Data mode is enabled (MODE<32,16> (SPIxCON<11:10>) = 01):

Only lower 16-bits (SPIxBUF<15:0>) of this register are used to form the 16-bit character.

When 8-Bit Data mode is enabled (MODE<32,16> (SPIxCON<11:10>) = 00):

Only lower 8-bits (SPIxBUF<7:0>) of this register are used to form the 8-bit character.
© 2009 Microchip Technology Inc. DS61106F-page 23-11

PIC32MX Family Reference Manual
Register 23-4: SPIXBRG: SPI Baud Rate Register(1,2,3)

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

r-x r-x r-x r-x r-x r-x r-x R/W-0
— — — — — — — BRG<8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
BRG<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-9 Reserved: Write ‘0’; ignore read
bit 8-0 BRG<8:0>: Baud Rate Divisor bits

Note 1: This register has an associated Clear register (SPIxBRGCLR) at an offset of 0x4 bytes. Writing a ‘1’ to any
bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register
should be ignored.

2: This register has an associated Set register (SPIxBRGSET) at an offset of 0x8 bytes. Writing a ‘1’ to any
bit position in the Set register will set valid bits in the associated register. Reads from the Set register
should be ignored.

3: This register has an associated Invert register (SPIxBRGINV) at an offset of 0xC bytes. Writing a ‘1’ to any
bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert
register should be ignored.
DS61106F-page 23-12 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.3 MODES OF OPERATION
The SPI module offers the following operating modes:

• 8-Bit, 16-Bit, and 32-bit data transmission modes
• 8-Bit, 16-Bit, and 32-bit data reception modes
• Master and Slave modes
• Framed SPI modes

23.3.1 8-Bit, 16-Bit, and 32-Bit Operation
The PIC32MX SPI module allows three types of data widths when transmitting and receiving data
over an SPI bus. The selection of data width determines the minimum length of SPI data. For
example, when the selected data width is 32, all transmission and receptions are performed in
32-bit values. All reads and writes from the CPU are also performed in 32-bit values. Accordingly,
the application software should select the appropriate data width to maximize its data throughput.

Two control bits, MODE32 and MODE16 (SPIxCON<11:10>), define the mode of operation. To
change the mode of operation on the fly, the SPI module must be idle (i.e., not performing any
transactions). If the SPI module is switched off (SPIxCON<15> = 0), the new mode will be
available when the module is again switched on.

Additionally, the following items should be noted in this context:

• The MODE32 and MODE16 bits should not be changed when a transaction is in progress.
• The first bit to be shifted out from SPIxSR varies with the selected mode of operation:

- 8-Bit mode, bit 7
- 16-Bit mode, bit 15
- 32-Bit mode, bit 31

• In each mode, data is shifted into bit 0 of the SPIxSR.
• The number of clock pulses at the SCKx pin are also dependent on the selected mode of

operation:
- 8-Bit mode, 8 clocks
- 16-Bit mode, 16 clocks
- 32-Bit mode, 32 clocks

23.3.2 Buffer Modes
There are two SPI buffering modes: Standard and Enhanced.

23.3.2.1 STANDARD BUFFER MODE

The SPI Data Receive/Transmit Buffer (SPIxBUF) register is actually two separate internal
registers: the Transmit Buffer (SPIxTXB) and the Receive Buffer (SPIxRXB). These two
unidirectional registers share the SFR address of SPIxBUF.

When a complete byte/word is received, it is transferred from SPISR to SPIRXB and the SPIRBF
flag is set. If the software reads the SPIxBUF buffer, the SPIRBF bit is cleared.

As the software writes to SPIxBUF, the data is loaded into the SPITXB bit and the SPITBF bit is
set by hardware. As the data is transmitted out of SPISR, the SPITBF flag is cleared.

The SPI module double-buffers transmit/receive operations and allow continuous data transfers
in the background. Transmission and reception occur simultaneously in the SPISR bit.

Note: Enhanced Buffer mode is not available on all devices. Refer to the specific device
data sheet for details.
© 2009 Microchip Technology Inc. DS61106F-page 23-13

PIC32MX Family Reference Manual
23.3.2.2 ENHANCED BUFFER MODE

The Enhanced Buffer Enable (ENHBUF) bit in the SPI Control (SPIxCON<16>) register can be
set to enable the Enhanced Buffer mode.

In Enhanced Buffer mode, multi-element FIFO buffers are used for the transmit buffer (SPIxTXB)
and the receive buffer (SPIxRXB). SPIxBUF provides access to both the receive and transmit
FIFOs and the data transmission and reception in the SPISR buffer in this mode is identical to
that in Standard Buffer mode. The FIFO depth depends on the data width chosen by the
Word/Half-Word Byte Communication Select (MODE<32,16>) bits in the SPI Control
(SPIxCON<11:10>) register. If the MODE field selects 32-bit data lengths, the FIFO is 4 deep, if
MODE selects 16-bit data lengths, the FIFO is 8 deep, or if MODE selects 8-bit data lengths the
FIFO is 16 deep.

The SPITBF status bit is set when all of the elements in the transmit FIFO buffer are full and is
cleared if one or more of those elements are empty. The SPIRBF status bit is set when all of the
elements in the receive FIFO buffer are full and is cleared if the SPIxBUF buffer is read by the
software.

The SPITBE status bit is set if all the elements in the transmit FIFO buffer are empty and is
cleared otherwise. The SPIRBE bit is set if all of the elements in the receive FIFO buffer are
empty and is cleared otherwise. The Shift Register Empty (SRMT) bit is valid only in Enhanced
Buffer mode and is set when the shift register is empty and cleared otherwise.

There is no underrun or overflow protection against reading an empty receive FIFO element or
writing a full transmit FIFO element. However, the SPISR bit provides Transmit Underrun
(SPITUR) and Receive Overflow (SPIROV) status bit, which can be monitored along with the
other status bits.

The Receive Buffer Element Count (RXBUFELM<4:0>) bits in the SPI Status
(SPIxSTAT<28:24>) register indicate the number of unread elements in the receive FIFO. The
Transmit Buffer Element Count (TXBUFELM<4:0>) bits in the SPI Status (SPIxSTAT<20:16>)
register indicate the number of elements not transmitted in the transmit FIFO.
DS61106F-page 23-14 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.3.3 Master and Slave Modes

Figure 23-6: SPI Master/Slave Connection Diagram

23.3.3.1 MASTER MODE OPERATION

Perform the following steps to set up the SPI module for the Master mode operation:

1. Disable the SPI interrupts in the respective IEC0/1 register.
2. Stop and reset the SPI module by clearing the ON bit.
3. Clear the receive buffer.
4. Clear the ENHBUF bit (SPIxCON<16>) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
5. If SPI interrupts are not going to be used, skip this step and continue to step 5. Otherwise

the following additional steps are performed:
a) Clear the SPIx interrupt flags/events in the respective IFS0/1 register.
b) Set the SPIx interrupt enable bits in the respective IEC0/1 register.
c) Write the SPIx interrupt priority and subpriority bits in the respective IPC5/7 register.

6. Write the Baud Rate register, SPIxBRG.
7. Clear the SPIROV bit (SPIxSTAT<6>).
8. Write the desired settings to the SPIxCON register with MSTEN (SPIxCON<5>) = 1.
9. Enable SPI operation by setting the ON bit (SPIxCON<15>).
10. Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will

start as soon as data is written to the SPIxBUF register.

Serial Receive Buffer
(SPIxRXB)

Shift Register
(SPIxSR)

LSBMSB

SDIx

SDOx

PROCESSOR 2

SCKx

SSx(1)

Serial Transmit Buffer
(SPIxTXB)

Serial Receive Buffer
(SPIxRXB)(2)

Shift Register
(SPIxSR)

MSB LSB

SDOx

SDIx

PIC32MX

Serial Clock

SSEN (SPIxCON<7>) = 1 and
MSTEN (SPIxCON<5>) = 0

Note 1: Using the SSx pin in Slave mode of operation is optional.
2: User must write transmit data to SPIxBUF and read received data from SPIxBUF. The SPIxTXB and SPIxRXB

registers are memory mapped to SPIxBUF.

GPIO/SSx

SCKx

Serial Transmit Buffer
(SPIxTXB)(2)

MSTEN (SPIxCON<5>) = 1

SPI Buffer
(SPIxBUF)

SPI Buffer
(SPIxBUF)

[SPI Master] [SPI Slave]
© 2009 Microchip Technology Inc. DS61106F-page 23-15

PIC32MX Family Reference Manual
In Master mode, the PBCLK is divided and then used as the serial clock. The division is based
on the settings in the SPIxBRG register. The serial clock is output via the SCKx pin to slave
devices. Clock pulses are only generated when there is data to be transmitted; except when in
Framed mode, when clock is generated continuously. For further information, refer to Section
23.3.7 “SPI Master Mode Clock Frequency”.

The Master Mode Slave Select Enable (MSSEN) bit in the SPI Control (SPIxCON<28>) register
can be set to automatically drive the slave select signal (SS) in Master mode. Clearing this bit
disabled the slave select signal support in Master mode. The FRMPOL (SPIxCON<29>) bit
determines the polarity for the slave select signal in Master mode.

Bits CKP (SPIxCON<6>) and CKE (SPIxCON<8>) determine on which edge of the clock data
transmission occurs.

Both data to be transmitted and data that is received are written to, or read from, the SPIxBUF
register, respectively.

The following progression describes the SPI module operation in Master mode:

1. Once the module is set up for Master mode operation and enabled, data to be transmitted
is written to SPIxBUF register. The SPITBE (SPIxSTAT<3>) bit is cleared.

2. The contents of SPIxTXB are moved to the shift register SPIxSR (see Figure 23-6), and
the SPITBE bit is set by the module.

3. A series of 8/16/32 clock pulses shifts 8/16/32 bits of transmit data from SPIxSR to the
SDOx pin and simultaneously shifts the data at the SDIx pin into SPIxSR.

4. When the transfer is complete, the following events will occur:
a) The interrupt flag bit SPIxRXIF is set. SPI interrupts can be enabled by setting the

interrupt enable bit SPIxRXIE. The SPIxRXIF flag is not cleared automatically by the
hardware.

b) Also, when the ongoing transmit and receive operation is completed, the contents of
SPIxSR are moved to SPIxRXB.

c) The SPIRBF bit (SPIxSTAT<0>) is set by the module, indicating that the receive
buffer is full. Once SPIxBUF is read by the user code, the hardware clears the
SPIRBF bit. In Enhanced Buffer mode the SPIRBE (SPIxSTAT<5>) bit is set when
the SPIxRXB FIFO buffer is completely empty and cleared when not empty.

5. If the SPIRBF bit is set (the receive buffer is full) when the SPI module needs to transfer
data from SPIxSR to SPIxRXB, the module will set the SPIROV bit (SPIxSTAT<6>)
indicating an overflow condition.

6. Data to be transmitted can be written to SPIxBUF by the user software at any time, if the
SPITBE (SPIxSTAT<3>) bit is set. The write can occur while SPIxSR is shifting out the
previously written data, allowing continuous transmission. In Enhanced Buffer mode the
SPITBF (SPIxSTAT<1>) bit is set when the SPIxTXB FIFO buffer is completely full and
clear when it is not full.

Note: The SPI device must be turned off prior to changing the mode from Slave to Master.
When using the Slave Select mode, the SSx or another GPIO pin is used to control
the slave’s SSx input. The pin must be controlled in software.

Note: The MSSEN bit is not available on all devices. Refer to the specific device data
sheet for details.

Note: The user must turn off the SPI device prior to changing the CKE or CKP bits.
Otherwise, the behavior of the device is not guaranteed.

Note: The SPIxSR register cannot be written to directly by the user. All writes to the
SPIxSR register are performed through the SPIxBUF register.
DS61106F-page 23-16 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
Example 23-1: Initialization Code for 16-Bit SPI Master Mode
/*

The following code example will initialize the SPI1 in Master mode.
It assumes that none of the SPI1 input pins are shared with an analog input. If so, the
AD1PCFG and corresponding TRIS registers have to be properly configured.

*/
int rData;

IEC0CLR=0x03800000; // disable all interrupts
SPI1CON = 0; // Stops and resets the SPI1.
rData=SPI1BUF; // clears the receive buffer
IFS0CLR=0x03800000; // clear any existing event
IPC5CLR=0x1f000000; // clear the priority
IPC5SET=0x0d000000; // Set IPL=3, Subpriority 1
IEC0SET=0x03800000; // Enable RX, TX and Error interrupts

SPI1BRG=0x1; // use FPB/4 clock frequency
SPI1STATCLR=0x40; // clear the Overflow
SPI1CON=0x8220; // SPI ON, 8 bits transfer, SMP=1, Master mode

// from now on, the device is ready to transmit and receive
data

SPI1BUF=’A’; // transmit an A character
© 2009 Microchip Technology Inc. DS61106F-page 23-17

PIC32MX Family Reference Manual
Figure 23-7: SPI Master Mode Operation in 8-Bit Mode (MODE32 = 0, MODE16 = 0)

SCKx
(CKP = 0

SCKx
(CKP = 1

SCKx
(CKP = 0

SCKx
(CKP = 1

4 Clock modes

Input
Sample(2)

Input
Sample

SDIx(2)

bit 7 bit 0

SDOx bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

bit 7 bit 0
SDIx

SPIxRXIF

(SMP = 1)

(SMP = 0)

(SMP = 1)

CKE = 1)

CKE = 0)

CKE = 0)

CKE = 0)

(SMP = 0)

User writes
to SPIxBUF

SDOx bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

(CKE = 0)

(CKE = 1)

Approximately 2 SYSCLK latency to set
SPIxRXIF flag bit

Note 1: Four SPI Clock modes are shown here to demonstrate the functionality of bits CKP (SPIxCON<6>) and CKE
(SPIxCON<8>). Only one of the four modes can be chosen for operation.

2: The SDI and input samples shown here for two different values of the SMP bit (SPIxCON<9>) are strictly for dem-
onstration purposes. Only one of the two configurations of the SMP bit can be chosen during operation.

3: If there are no pending transmissions, SPIxTXB is transferred to SPIxSR as soon as the user writes to SPIxBUF.
4: Operation for 8-bit mode shown. 16-bit and 32-bit modes are similar.

SPIxSR moved
into SPIxRXB

 User reads
 SPIxBUF

(clock output
at the SCKx
 pin in Master
mode)(1)

(SPIxSTAT<0>)

 SPITBE

SPIxTXB to SPIxSR(3)
User writes new data
during transmission

SPIRBF

Two modes
available for
SMP control
bit(4)
DS61106F-page 23-18 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.3.3.2 SLAVE MODE OPERATION

The following steps are used to set up the SPI module for the Slave mode of operation:

1. If using interrupts, disable the SPI interrupts in the respective IEC0/1 register.
2. Stop and reset the SPI module by clearing the ON bit.
3. Clear the receive buffer.
4. Clear the ENHBUF bit (SPIxCON<16>) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
5. If using interrupts, the following additional steps are performed:

a) Clear the SPIx interrupt flags/events in the respective IFS0/1 register.
b) Set the SPIx interrupt enable bits in the respective IEC0/1 register.
c) Write the SPIx interrupt priority and subpriority bits in the respective IPC5/7 register.

6. Clear the SPIROV bit (SPIxSTAT<6>).
7. Write the desired settings to the SPIxCON register with MSTEN (SPIxCON<5>) = 0.
8. Enable SPI operation by setting the ON bit (SPIxCON<15>).
9. Transmission (and reception) will start as soon as the master provides the serial clock.

In Slave mode, data is transmitted and received as the external clock pulses appear on the SCKx
pin. Bits CKP (SPIxCON<6>) and CKE (SPIxCON<8>) determine on which edge of the clock
data transmission occurs.

Both data to be transmitted and data that is received are respectively written into or read from
the SPIxBUF register.

The rest of the operation of the module is identical to that in the Master mode including Enhanced
Buffer mode.

23.3.3.2.1 Slave Mode Additional Features
The following additional features are provided in the Slave mode:

• Slave Select Synchronization

The SSx pin allows a Synchronous Slave mode. If the SSEN bit (SPIxCON<7>) is set, trans-
mission and reception is enabled in Slave mode only if the SSx pin is driven to a low state.
The port output or other peripheral outputs must not be driven in order to allow the SSx pin
to function as an input. If the SSEN bit is set and the SSx pin is driven high, the SDOx pin is
no longer driven and will tri-state even if the module is in the middle of a transmission. An
aborted transmission will be retried the next time the SSx pin is driven low using the data
held in the SPIxTXB register. If the SSEN bit is not set, the SSx pin does not affect the mod-
ule operation in Slave mode.

• SPITBE Status Flag Operation

The SPITBE bit (SPIxSTAT<3>) has a different function in the Slave mode of operation. The
following describes the function of SPITBE for various settings of the Slave mode of opera-
tion:

- If SSEN (SPIxCON<7>) is cleared, the SPITBE is cleared when SPIxBUF is loaded by
the user code. It is set when the module transfers SPIxTXB to SPIxSR. This is similar
to the SPITBE bit function in Master mode.

- If SSEN is set, SPITBE is cleared when SPIxBUF is loaded by the user code. How-
ever, it is set only when the SPIx module completes data transmission. A transmission
will be aborted when the SSx pin goes high and may be retried at a later time. So,
each data Word is held in SPIxTXB until all bits are transmitted to the receiver.

Note: The SPI device must be turned off prior to changing the mode from Master to Slave.

Note: Slave Select cannot be used when operating in Frame mode.
© 2009 Microchip Technology Inc. DS61106F-page 23-19

PIC32MX Family Reference Manual
Example 23-2: Initialization Code for 16-Bit SPI Slave Mode
/*

The following code example will initialize the SPI1 in Slave mode.
It assumes that none of the SPI1 input pins are shared with an analog input. If so, the
AD1PCFG and corresponding TRIS registers have to be properly configured.

*/
int rData;

IEC0CLR=0x03800000; // disable all interrupts
SPI1CON = 0; // Stops and resets the SPI1.
rData=SPI1BUF; // clears the receive buffer
IFS0CLR=0x03800000; // clear any existing event
IPC5CLR=0x1f000000; // clear the priority
IPC5SET=0x0d000000; // Set IPL=3, Subpriority 1
IEC0SET=0x03800000; // Enable RX, TX and Error interrupts

SPI1STATCLR=0x40; // clear the Overflow
SPI1CON=0x8000; // SPI ON, 8 bits transfer, Slave mode

// from now on, the device is ready to receive and transmit data
DS61106F-page 23-20 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
Figure 23-8: SPI Slave Mode Operation in 8-Bit Mode with Slave Select Pin Disabled (MODE32 = 0,
MODE16 = 0, SSEN = 0)

SCKx Input(1)
(CKP = 1

SCKx Input(1)

(CKP = 0

Input
Sample

SDIx Input

bit 7 bit 0

SDOx bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

SPIxRXIF

(SMP = 0)

CKE = 0)

CKE = 0)

(SMP = 0)

User writes to
SPIxBUF(2)

SPIxSR to
SPIxRXB

SPITBE

SPIRBF

Output

Note 1: Two SPI Clock modes are shown here only to demonstrate the functionality of bits CKP (SPIxCON<6>) and CKE
(SPIxCON<8>). Any combination of CKP and CKE bits can be chosen for module operation.

2: If there are no pending transmissions or a transmission is in progress, SPIxBUF is transferred to SPIxSR as soon
as the user writes to SPIxBUF.

3: Operation for 8-bit mode is shown. 16-bit and 32-bit modes are similar.

Approximately 2 SYSCLK latency to set
SPIxRXIF flag bit

(3)
© 2009 Microchip Technology Inc. DS61106F-page 23-21

PIC32MX Family Reference Manual
Figure 23-9: SPI Slave Mode Operation in 8-Bit Mode with Slave Select Pin Enabled (MODE32 = 0,
MODE16 = 0, SSEN = 1)

23.3.4 SPI Error Handling
When a new data word has been shifted into shift register SPIxSR and the previous contents of
receive register SPIxRXB have not been read by the user software, the SPIROV bit
(SPIxSTAT<6>) will be set. The module will not transfer the received data from SPIxSR to the
SPIxRXB. Further data reception is disabled until the SPIROV bit is cleared. The SPIROV bit is
not cleared automatically by the module and must be cleared by the user software.

23.3.5 SPI Receive-Only Operation
Setting the control bit DISSDO (SPIxCON<12>) disables transmission at the SDOx pin. This
allows the SPIx module to be configured for a Receive-Only mode of operation. The SDOx pin
will be controlled by the respective port function if the DISSDO bit is set.

The DISSDO function is applicable to all SPI operating modes.

SCKx
(CKP = 1

SCKx
(CKP = 0

Input
Sample

SDIx
bit 7 bit 0

SDOx bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

SPIxRXIF

(SMP = 0)

CKE = 0)

CKE = 0)

(SMP = 0)

User Writes

SPIxBUF

SPIxSR to
SPIxBUF

SSx(1)

Note 1: When the SSEN (SPIxCON<7>) bit is set to ‘1’, the SSx pin must be driven low so as to enable transmission and
reception in Slave mode.

2: Transmit data is held in SPIxTXB and SPITBE (SPIxSTAT<3>) remains clear until all bits are transmitted.
3: Operation for 8-bit mode is shown. 16-bit and 32-bit modes are similar.

SPIRBF

~2 SYSCLK
latency

SPITBE(2)

SPIxBUF
to
SPIxSR

to

(3)

L

SPIxBUF
User Reads
DS61106F-page 23-22 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.3.6 Framed SPI Modes
The module supports a very basic framed SPI protocol while operating in either Master or Slave
modes. The following features are provided in the SPI module to support Framed SPI modes:

• The control bit FRMEN (SPIxCON<31>) enables Framed SPI mode and causes the SSx
pin to be used as a frame synchronization pulse input or output pin. The state of SSEN
(SPIxCON<7>) is ignored.

• The control bit FRMSYNC (SPIxCON<30>) determines whether the SSx pin is an input or
an output (i.e., whether the module receives or generates the frame synchronization pulse).

• The FRMPOL (SPIxCON<29>) determines the frame synchronization pulse polarity for a
single SPI clock cycle.

• The control bit FRMSYPW (SPIxCON<27>) can be set to configure the width of the frame
synchronization pulse to one character wide.

• The control bits FRMCNT<2:0> (SPIxCON<26:24>) can be set to configure the number of
data characters transmitted per frame synchronization pulse.

The following Framed SPI modes are supported by the SPI module:

• Frame Master mode

The SPI module generates the frame synchronization pulse and provides this pulse to other
devices at the SSx pin.

• Frame Slave mode

The SPI module uses a frame synchronization pulse received at the SSx pin.

The Framed SPI modes are supported in conjunction with the Master and Slave modes.
Therefore, the following Framed SPI Configurations are available:

• SPI Master mode and Frame Master mode
• SPI Master mode and Frame Slave mode
• SPI Slave mode and Frame Master mode
• SPI Slave mode and Frame Slave mode

These four modes determine whether or not the SPIx module generates the serial clock and the
frame synchronization pulse.

The ENHBUF (SPIxCON<16>) bit can be configured to use the Standard Buffering mode or
Enhanced Buffering mode in Framed SPI mode.

Note: The FRMSYPW bit is not available on all devices. Refer to the specific device data
sheet for details.
© 2009 Microchip Technology Inc. DS61106F-page 23-23

PIC32MX Family Reference Manual
Figure 23-10: SPI Master, Frame Master Connection Diagram

23.3.6.1 SCKx IN FRAMED SPI MODES

When FRMEN (SPIxCON<31>) = 1 and MSTEN (SPIxCON<5>) = 1, the SCKx pin becomes an
output and the SPI clock at SCKx becomes a free-running clock.

When FRMEN = 1 and MSTEN = 0, the SCKx pin becomes an input. The source clock provided
to the SCKx pin is assumed to be a free-running clock.

The polarity of the clock is selected by bit CKP (SPIxCON<6>). Bit CKE (SPIxCON<8>) is not
used for the Framed SPI modes.

When CKP = 0, the frame sync pulse output and the SDOx data output change on the rising edge
of the clock pulses at the SCKx pin. Input data is sampled at the SDIx input pin on the falling edge
of the serial clock.

When CKP = 1, the frame sync pulse output and the SDOx data output change on the falling
edge of the clock pulses at the SCKx pin. Input data is sampled at the SDIx input pin on the rising
edge of the serial clock.

Serial Receive Buffer
(SPIxRXB)(3)

Shift Register
(SPIxSR)

MSb LSb

SDOx

SDIx

PIC32MX

Serial Receive Buffer
(SPIxRXB)

Shift Register
(SPIxSR)

LSbMSb

SDIx

SDOx

PROCESSOR 2

Serial Clock

Note 1: In Framed SPI modes, the SSx pin is used to transmit/receive the frame synchronization pulse.
2: Framed SPI modes require the use of all four pins (i.e., using the SSx pin is not optional).
3: The SPIxTXB and SPIxRXB registers are memory mapped to the SPIxBUF register.

SCKx

SSxSSx

SCKx

Serial Transmit Buffer
(SPIxTXB)(3)

Serial Transmit Buffer
(SPIxTXB)

Frame Sync
Pulse(1, 2)

SPI Buffer
(SPIxBUF)

SPI Buffer
(SPIxBUF)

[SPI Master, Frame Master] [SPI Slave, Frame Slave]
DS61106F-page 23-24 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.3.6.2 SPIX BUFFERS IN FRAMED SPI MODES

When FRMSYNC (SPIxCON<30>) = 0, the SPIx module is in the Frame Master mode of
operation. In this mode, the frame sync pulse is initiated by the module when the user software
writes the transmit data to SPIxBUF location (thus writing the SPIxTXB register with transmit
data). At the end of the frame sync pulse, SPIxTXB is transferred to SPIxSR and data
transmission/reception begins.

When FRMSYNC = 1, the module is in Frame Slave mode. In this mode, the frame sync pulse
is generated by an external source. When the module samples the frame sync pulse, it will
transfer the contents of the SPIxTXB register to SPIxSR, and data transmission/ reception
begins. The user must make sure that the correct data is loaded into the SPIxBUF for
transmission before the frame sync pulse is received.

23.3.6.3 SPI MASTER MODE AND FRAME MASTER MODE

This Framed SPI mode is enabled by setting bits MSTEN (SPIxCON<5>) and FRMEN
(SPIxCON<31>) to ‘1’, and bit FRMSYNC (SPIxCON<30>) to ‘0’. In this mode, the serial clock
will be output continuously at the SCKx pin, regardless of whether the module is transmitting.
When SPIxBUF is written, the SSx pin will be driven active, high or low depending on bit
FRMPOL (SPIxCON<29>), on the next transmit edge of the SCKx clock. The SSx pin will be high
for one SCKx clock cycle. The module will start transmitting data on the next transmit edge of the
SCKx, as shown in Figure 23-11. A connection diagram indicating signal directions for this
operating mode is shown in Figure 23.8.

Figure 23-11: SPI Master, Frame Master (MODE32 = 0, MODE16 = 1, SPIFE = 0,
FRMPOL = 1)

Note: Receiving a frame sync pulse will start a transmission, regardless of whether or not
data was written to SPIxBUF. If a write was not performed, zeros will be transmitted.

SCKx

SSx

SDOx

(CKP = 0)

bit 15 bit 14 bit 13 bit 12

SDIx

bit 15 bit 14 bit 13 bit 12

Write to SPIxBUF Receive Samples at SDIx
Pulse Generated at SSx

SCKx
(CKP = 1)
© 2009 Microchip Technology Inc. DS61106F-page 23-25

PIC32MX Family Reference Manual
23.3.6.4 SPI Master Mode and Frame Slave Mode

This Framed SPI mode is enabled by setting bits MSTEN (SPIxCON<5>), FRMEN
(SPIxCON<31>), and bits FRMSYNC (SPIxCON<30>) to ‘1’. The SSx pin is an input, and it is
sampled on the sample edge of the SPI clock. When it is sampled active, high or low depending
on bit FRMPOL (SPIxCON<29>), data will be transmitted on the subsequent transmit edge of the
SPI clock, as shown in Figure 23-12. The interrupt flag SPIxIF is set when the transmission is
complete. The user must make sure that the correct data is loaded into SPIxBUF for transmission
before the signal is received at the SSx pin. A connection diagram indicating signal directions for
this operating mode is shown in Figure 23-13.

Figure 23-12: SPI Master, Frame Slave (MODE32 = 0, MODE16 = 1, SPIFE = 0,
FRMPOL = 1)

Figure 23-13: SPI Master, Frame Slave Connection Diagram

 Receive Samples at SDIx

SCK

FSYNC

SDO

(CKP = 0)

bit 15 bit 14 bit 13 bit 12

SDI

Sample SSx Pin
for Frame Sync Pulse

bit 15 bit 14 bit 13 bit 12

Write to
SPIxBUF

SCKx
(CKP = 1)

SDOx

SDIx

Serial Clock

Note 1: In Framed SPI modes, the SSx pin is used to transmit/receive the frame synchronization pulse.
2: Framed SPI modes require the use of all four pins (i.e., using the SSx pin is not optional).

SSx

SCKx

Frame Sync

SDIx

SDOx

SSx

SCKx

PIC32MX
[SPI Master, Frame Slave]

PROCESSOR 2
[SPI Slave, Frame Master]

Pulse(1, 2)
DS61106F-page 23-26 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.3.6.5 SPI SLAVE MODE AND FRAME MASTER MODE

This Framed SPI mode is enabled by setting bit MSTEN (SPIxCON<5>) to ‘0’, bit FRMEN
(SPIxCON<31>) to ‘1’ and bit FRMSYNC (SPIxCON<30>) to ‘0’. The input SPI clock will be con-
tinuous in Slave mode. The SSx pin will be an output when bit FRMSYNC is low. Therefore, when
SPIBUF is written, the module will drive the SSx pin active, high or low depending on bit FRMPOL
(SPIxCON<29>), on the next transmit edge of the SPI clock. The SSx pin will be driven high for
one SPI clock cycle. Data transmission will start on the next SPI clock transmit edge. A
connection diagram indicating signal directions for this operating mode is shown in Figure 23-14.

Figure 23-14: SPI Slave, Frame Master Connection Diagram

23.3.6.6 SPI SLAVE MODE AND FRAME SLAVE MODE

This Framed SPI mode is enabled by setting bits MSTEN (SPIxCON<5>) to ‘0’, FRMEN
(SPIxCON<31>) to ‘1’, and FRMSYNC (SPIxCON<30>) to ‘1’. Therefore, both the SCKx and
SSx pins will be inputs. The SSx pin will be sampled on the sample edge of the SPI clock. When
SSx is sampled active, high or low depending on bit FRMPOL (SPIxCON<29>), data will be
transmitted on the next transmit edge of SCKx. A connection diagram indicating signal directions
for this operating mode is shown in Figure 23-15.

Figure 23-15: SPI Slave, Frame Slave Connection Diagram

Serial Clock

Note 1: In Framed SPI modes, the SSx pin is used to transmit/receive the frame sync pulse.
2: Framed SPI modes require the use of all four pins (i.e., using the SSx pin is not optional).

SDOx

SDIx

SSx

SCKx

PIC32MX
[SPI Slave, Frame Master]

SDIx

SDOx

SSx

SCKx

PROCESSOR 2
[SPI Master, Frame Slave]

Frame Sync
Pulse(1, 2)

Serial Clock

Note 1: In Framed SPI modes, the SSx pin is used to transmit/receive the frame sync pulse.
2: Framed SPI modes require the use of all four pins (i.e., using the SSx pin is not optional).
3: Slave Select is not available when using Frame mode as a Slave device.

SDOx

SDIx

SSx

SCKx

PIC32MX
[SPI Slave, Frame Slave]

SDIx

SDOx

SSx

SCKx

PROCESSOR 2
[SPI Master, Frame Master]

Frame Sync
Pulse((1, 2, 3)
© 2009 Microchip Technology Inc. DS61106F-page 23-27

PIC32MX Family Reference Manual
23.3.7 SPI Master Mode Clock Frequency
The SPI module allows flexibility in baud rate generation through the 9-bit SPIxBRG register.
SPIxBRG is readable and writable, and determines the baud rate. The peripheral clock PBCLK
provided to the SPI module is a divider function of the CPU core clock. This clock is divided based
on the value loaded into SPIxBRG. The SCKx clock obtained by dividing PBCLK is of 50% duty
cycle and it is provided to the external devices via the SCKx pin.

Equation 23-1 defines the SCKx clock frequency as a function of SPIxBRG settings.

Equation 23-1:

Therefore, the maximum baud rate possible is FPB/2 (SPIxBRG = 0), and the minimum baud rate
possible is FPB/1024.

Some sample SPI clock frequencies (in kHz) are shown in the table below:

Note: The SCKx clock is not free running for non-framed SPI modes. It will only run for 8,
16, or 32 pulses when SPIxBUF is loaded with data. It will however, be continuous
for Framed modes.

FSCK
FPB

2 SPIxBRG 1+()⋅
--=

Table 23-3: Sample SCKx Frequencies
SPIxBRG Setting 0 15 31 63 85 127

FPB = 50 MHz 25.00 MHz 1.56 MHz 781.25 kHz 390.63 kHz 290.7 kHz 195.31 kHz

FPB = 40 MHz 20.00 MHz 1.25 MHz 625.00 kHz 312.50 kHz 232.56 kHz 156.25 kHz

FPB = 25 MHz 12.50 MHz 781.25 kHz 390.63 kHz 195.31 kHz 145.35 kHz 97.66 kHz

FPB = 20 MHz 10.00 MHz 625.00 kHz 312.50 kHz 156.25 kHz 116.28 kHz 78.13 kHz

FPB = 10 MHZ 5.00 MHz 312.50 kHz 156.25 kHz 78.13 kHz 58.14 kHz 39.06 kHz

FPB = 60 MHz — 1.87 MHz 937.5 kHz 468.75 kHz 348.83 kHz 234.37 kHz

FPB = 72 MHz — 2.25 MHz 1.12 kHz 562.5 kHz 418.60 kHz 281.25 kHz

FPB = 80 MHZ — 2.5 MHz 1.25 kHz 625 kHz 465.11 kHz 312.5 kHz

Note: Not all clock rates are supported. For further information, refer to the SPI timing specifications in the specific
device data sheet.
DS61106F-page 23-28 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.4 INTERRUPTS
The SPI module has the ability to generate interrupts reflecting the events that occur during the
data communication. The following types of interrupts can be generated:

• Receive data available interrupts, signalled by SPI1RXIF (IFS0<25>), SPI2RXIF(IFS1<7>).
This event occurs when there is new data assembled in the SPIxBUF receive buffer.

• Transmit buffer empty interrupts, signalled by SPI1TXIF (IFS0<24>), SPI2TXIF (IFS1<6>).
This event occurs when there is space available in the SPIxBUF transmit buffer and new
data can be written.

• Receive buffer overflow interrupts, signalled by SPI1EIF (IFS0<23>), SPI2EIF(IFS1<5>).
This event occurs when there is an overflow condition for the SPIxBUF receive buffer (i.e.,
new receive data assembled but the previous one not read).

All of these interrupt flags must be cleared in software.

To enable the SPI interrupts, use the respective SPI interrupt enable bits:

• SPI1RXIE (IEC0<25>) and SPI2RXIE (IEC1<7>)
• SPI1TXIE (IEC0<24>) and SPI2TXIE (IEC1<6>)
• SPI1FIE (IEC0<23>) and SPI2FIE (IEC1<5>)

The interrupt priority level bits and interrupt subpriority level bits must be also be configured:

• SPI1IP (IPC5<28:26>), SPI1IS (IPC5<25:24>)
• SPI2IP (IPC7<28:26>), SPI2IS (IPC7<25:24>)

When using Enhanced Buffer mode, the SPI Transmit Buffer Empty Interrupt Mode
(STXISEL<1:0>) bits in the SPI Control (SPIxCON<3:2>) register can be used to configure the
operation of the transmit buffer empty interrupts when the buffer is not full, empty by one-half or
more, completely empty, or when the last transfer is shifted out.

Similarly, when using Enhanced Buffer mode, the SPI Receive Buffer Full Interrupt Mode
(SRXISEL<1:0>) bits in the SPI Control (SPIxCON<1:0>) register can be used to configure the
generation of receive buffer full interrupts when the buffer is full, full by one-half or more, is not
empty, or when the last word is read.

Refer to Section 8. “Interrupts” (DS61108) for further details.

23.4.1 Interrupt Configuration
Each SPI module has three dedicated interrupt flag bits: SPIxEIF, SPIxRXIF, and SPIxTXIF, and
corresponding interrupt enable/mask bits SPIxEIE, SPIxRXIE, and SPIxTXIE. These bits are
used to determine the source of an interrupt, and to enable or disable an individual interrupt
source. Note that all the interrupt sources for a specific SPI module share one interrupt vector.
Each SPI module can have its own priority level independent of other SPI modules.

SPIxTXIF is set when the SPI transmit buffer is empty and another character can be written to
the SPIxBUF register. SPIxRXIF is set when there is a received character available in SPIxBUF.
SPIxEIF is set when a Receive Overflow condition occurs.

Note that bits SPIxTXIF, SPIxRXIF, and SPIxEIF will be set without regard to the state of the
corresponding enable bit. IF bits can be polled by software if desired.

Bits SPIxEIE, SPIxTXIE, SPIxRXIE are used to define the behavior of the Interrupt Controller
(INT) when a corresponding SPIxEIF, SPIxTXIF, or SPIxRXIF bit is set. When the corresponding
IE bit is clear, the INT module does not generate a CPU interrupt for the event. If the IE bit is set,
the INT module will generate an interrupt to the CPU when the corresponding IF bit is set (subject
to the priority and subpriority as outlined below).

It is the responsibility of the user’s software routine that services a particular interrupt to clear the
appropriate interrupt flag bit before the service routine is complete.

Note: Enhanced Buffer mode is not available on all devices. Refer to the specific device
data sheet for details.
© 2009 Microchip Technology Inc. DS61106F-page 23-29

PIC32MX Family Reference Manual
The priority of each SPI module can be set independently with the SPIxIP<2:0> bits. This priority
defines the priority group to which the interrupt source will be assigned. The priority groups range
from a value of 7 (the highest priority), to a value of 0 (which does not generate an interrupt). An
interrupt being serviced will be preempted by an interrupt in a higher priority group.

The subpriority bits allow setting the priority of an interrupt source within a priority group. The
values of the subpriority SPIxIS<1:0> range from 3 (the highest priority) to 0, the lowest priority.
An interrupt within the same priority group but having a higher subpriority value will not preempt
a lower subpriority interrupt that is in progress.

The priority group and subpriority bits allow more than one interrupt source to share the same
priority and subpriority. If simultaneous interrupts occur in this configuration the natural order of
the interrupt sources within a Priority/subpriority group pair determine the interrupt generated.
The natural priority is based on the vector numbers of the interrupt sources. The lower the vector
number the higher the natural priority of the interrupt. Any interrupts that were overridden by
natural order will then generate their respective interrupts based on Priority, subpriority, and
natural order, after the interrupt flag for the current interrupt is cleared.

After an enabled interrupt is generated, the CPU will jump to the vector assigned to that interrupt.
The vector number for the interrupt is the same as the natural order number. The CPU will then
begin executing code at the vector address. The user’s code at this vector address should
perform any application-specific operations required, and clear interrupt flags SPIxEIF,
SPIxTXIF, or SPIxRXIF, and then exit. Refer to the vector address table details in the Section 8.
“Interrupts” (DS61108) for more information on interrupts.

Example 23-3: SPI Initialization with Interrupts Enabled Code Example

Example 23-4: SPI1 ISR Code Example

/*
The following code example illustrates an SPI1 interrupt configuration.
When the SPI1 interrupt is generated, the cpu will jump to the vector assigned to SPI1
interrupt.
It assumes that none of the SPI1 input pins are shared with an analog input. If so, the
AD1PCFG and corresponding TRIS registers have to be properly configured.

*/

int rData;

IEC0CLR=0x03800000; // disable all SPI interrupts
SPI1CON = 0; // Stops and resets the SPI1.
rData=SPI1BUF; // clears the receive buffer
IFS0CLR=0x03800000; // clear any existing event
IPC5CLR=0x1f000000; // clear the priority
IPC5SET=0x0d000000; // Set IPL=3, Subpriority 1
IEC0SET=0x03800000; // Enable RX, TX and Error interrupts

SPI1BRG=0x1; // use FPB/4 clock frequency
SPI1STATCLR=0x40; // clear the Overflow
SPI1CON=0x8220; // SPI ON, 8 bits transfer, SMP=1, Master mode

/*
The following code example demonstrates a simple interrupt service routine for SPI1
interrupts. The user’s code at this vector should perform any application specific operations
and must clear the SPI1 interrupt flags before exiting.

*/

void __ISR(_SPI_1_VECTOR, ipl3)__SPI1Interrupt(void)
{

// ... perform application specific operations in response to the
// interrupt

IFS0CLR = 0x03800000; // Be sure to clear the SPI1 interrupt flags
// before exiting the service routine.

}

DS61106F-page 23-30 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
For devices with Enhanced Buffering mode, the user application should clear the interrupt
request flag after servicing the interrupt condition.

If an SPI interrupt has occurred, the ISR should read the SPI Data Buffer (SPIxBUF) register, and
then clear the SPI interrupt flag, as shown in Example 23-5.

Example 23-5: SPI1 ISR Code Example for Devices With Enhanced Buffering Mode
/*

The following code example demonstrates a simple interrupt service routine for SPI1
interrupts. The user’s code at this vector should perform any application specific operations
and must clear the SPI1 interrupt flags before exiting.

*/

void __ISR(_SPI_1_VECTOR, ipl3)__SPI1Interrupt(void)
{

int Data; // Read SPI data buffer
Data = SPI1BUF;

// ... perform application specific operations in response to the
// interrupt

IFS0CLR = 0x03800000; // Be sure to clear the SPI1 interrupt flags
// before exiting the service routine.

}

Note: The SPI1 ISR code examples show MPLAB® C32 C compiler specific syntax. Refer to your compiler
manual regarding support for ISRs.
© 2009 Microchip Technology Inc. DS61106F-page 23-31

PIC32MX Family Reference Manual
23.5 OPERATION IN POWER-SAVING AND DEBUG MODES

23.5.1 Sleep Mode
When the device enters Sleep mode, the system clock is disabled. The exact SPI module
operation during Sleep mode depends on the current mode of operation. The following
subsections describe mode-specific behavior.

23.5.1.1 MASTER MODE IN SLEEP MODE

The following items should be noted in Sleep mode:

• The Baud Rate Generator is stopped and reset.
• On-going transmission and reception sequences are aborted. The module will not resume

aborted sequences when Sleep mode is exited.
• Once in Sleep mode, the module will not transmit or receive any new data.

23.5.1.2 SLAVE MODE IN SLEEP MODE

In the Slave mode, the SPI module operates from the SCK provided by an external SPI Master.
Since the clock pulses at SCKx are externally provided for Slave mode, the module will continue
to function in Sleep mode. It will complete any transactions during the transition into Sleep. On
completion of a transaction, the SPIRBF flag is set. Consequently, bit SPIxRXIF will be set. If SPI
interrupts are enabled (SPIxRXIE = 1) and the SPI interrupt priority level is greater than the
present CPU priority level, the device will wake from Sleep mode and the code execution will
resume at the SPIx interrupt vector location. If the SPI interrupt priority level is lower than or equal
to the present CPU priority level, the CPU will remain in Idle mode.

The module is not reset on entering Sleep mode if it is operating as a slave device. Register
contents are not affected when the SPIx module is going into or coming out of Sleep mode.

23.5.2 Idle Mode
When the device enters Idle mode, the system clock sources remain functional.

23.5.2.1 MASTER MODE IN IDLE MODE

Bit SIDL (SPIxCON<13>) selects whether the module will stop or continue functioning in Idle
mode.

• If SIDL = 1, the module will discontinue operation in Idle mode. The module will perform the
same procedures when stopped in Idle mode that it does for Sleep mode.

• If SIDL = 0, the module will continue operation in Idle mode.

23.5.2.2 SLAVE MODE IN IDLE MODE

The module will continue operation in Idle mode irrespective of the SIDL setting. The behavior is
identical to the one in Sleep mode.

23.5.3 Debug Mode
Bit FRZ (SPIxCON<14>) determines whether the SPI module will run or stop while the CPU is
executing Debug exception code (i.e., application is halted) in Debug mode. When FRZ = 0, the
SPI module continues to run, even when the application is halted in Debug mode. When FRZ = 1
and the application is halted in Debug mode, the behavior is different from Master-to-Slave
mode.

23.5.3.1 FREEZE IN MASTER MODE

When FRZ = 1 and the application is halted in Debug mode, the module will freeze its operations
and make no changes to the state of the SPI module, such that it will continue exactly as it left
off. In other words, the transmission/reception is not aborted during this halt.

Note: To prevent unintentional abort of transmit and receive sequences, wait for the
current transmission to be completed before activating Sleep mode.
DS61106F-page 23-32 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.5.3.2 FREEZE IN SLAVE MODE

In Slave mode with an externally provided SCK, the module will continue to operate, even though
it is frozen (FRZ = 1), i.e., the shift register is functional. However, when data is received in the
shift register before Debug mode is exited, the data that has been received is ignored (i.e., not
transferred to SPIxBUF).

23.5.3.3 OPERATION OF SPIXBUF

23.5.3.3.1 Reads During Debug Mode
During Debug mode, SPIxBUF can be read; but the read operation does not affect any Status
bits. For example, if bit SPIRBF (SPIxSTAT<0>) is set when Debug mode is entered, it will remain
set on EXIT From Debug mode, even though the SPIxBUF register was read in Debug mode.

23.5.3.3.2 Writes During Debug Mode
When FRZ is set, write functionality depends on whether the SPI is in Master or Slave mode.

In Master mode: the write operation will place the data in the buffer, but the transmission will not
start until the Debug mode is exited.

In Slave mode: the write operation will place the data in the buffer, and the data will be sent out
whenever the Master initiates a new transaction, even if the device is still in Debug mode.

Note: The FRZ bit is readable and writable only when the CPU is executing in Debug
Exception mode. In all other modes, the FRZ bit reads as ‘0’. If FRZ bit is changed
during Debug mode, the new value does not take effect until the current Debug
Exception mode is exited and re-entered. During the Debug Exception mode, the
FRZ bit reads the state of the peripheral when entering Debug mode.
© 2009 Microchip Technology Inc. DS61106F-page 23-33

PIC32MX Family Reference Manual
23.6 EFFECTS OF VARIOUS RESETS

23.6.1 Device Reset
All SPI registers are forced to their Reset states upon a device Reset. When the asynchronous
Reset input goes active, the SPI logic:

• Resets all fields in SPIxCON and SPIxSTAT
• Resets the transmit and receive buffers (SPIx-BUF) to the empty state
• Resets the Baud Rate Generator

23.6.2 Power-on Reset
All SPI registers are forced to their Reset states when a Power-on Reset occurs.

23.6.3 Watchdog Timer Reset
All SPI registers are forced to their Reset states when a Watchdog Timer Reset occurs.

23.7 PERIPHERALS USING SPI MODULES
There are no other peripherals using the SPI module.
DS61106F-page 23-34 © 2009 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.8 DESIGN TIPS

Question 1: Can I use the SSx pin as an output to a slave device when the PIC32MX
family SPI module is configured in Master mode?

Answer: Yes, you can. Notice, however, that the SSx pin is not driven by the SPI Master.
You have to drive the bit yourself and pulse it before the SPI transmission takes
place. You can use any other I/O pin for that purpose.

Question 1: If I do not use the SDO output for my SPI module, is this I/O pin available as
a general purpose I/O pin?

Answer: Yes. If you are not interested in transmitting data, only receiving, you can use the
SDO pin as a general I/O pin. This is mainly useful for SPI modules that are
configured as SPI slave devices. Note that when used as a general purpose I/O
pin, the user is responsible for configuring the respective data direction register
(TRIS) for input or output.
© 2009 Microchip Technology Inc. DS61106F-page 23-35

PIC32MX Family Reference Manual
23.9 RELATED APPLICATION NOTES
This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the PIC32MX family device family, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the SPI module are:

Title Application Note #
Interfacing Microchip’s MCP41XXX/MCP42XXX Digital Potentiometers to a PIC® Microcontroller

AN746

Interfacing Microchip’s MCP3201 Analog-to-Digital Converter to the PIC® Microcontroller
AN719

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the PIC32MX family of devices.
DS61106F-page 23-36 © 2009 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.10 REVISION HISTORY

Revision A (July 2007)
This is the initial released version of this document.

Revision B (October 2007)
Revised Examples 23-1, 23-2, 23-3; Table 23-5.

Revision C (October 2007)
Updated document to remove Confidential status.

Revision D (April 2008)
Revised status to Preliminary; Revised U-0 to r-x.

Revision E (June 2008)
Added Footnote number to Registers 12-12-17; Revised Example 23-4; Revised Figure 23-8;
Change Reserved bits from “Maintain as” to “Write”; Added Note to ON bit (SPIxCON Register).

Revision F (August 2009)
This revision includes the following changes:

• Minor changes to the text and formatting have been incorporated through the document
• Updated register introductions in Section 23.2 “Status and Control Registers”
• Register Summary (Table 23-2)

- Removed references to the Clear, Set, Invert, IFS0, IFS1, IEC0, IEC1, IPC5, and IPC7
registers

- Added the Address Offset column
- Added Notes 1, 2, and 3, which describe the Clear, Set, and Invert registers
- Added these bits: MSSEN, FRMSYPW, FRMCNT<2:0>, ENHBUF, STXISEL<1:0>,

SRXISEL<1:0>, RXBUFELM<4:0>, SPITUR, SRMT, SPIRBE, AND SPITBF
• Removed the IFS0, IFS1, IEC0, IEC1, IPC5, and IPC7 registers
• Added Notes describing the Clear, Set, and Invert registers to the following registers:

- SPIxCON
- SPIxSTAT
- SPIxBRG

• Added SPIxBRG settings for 60, 72, and 80 MHz in the Sample SCKx Frequencies table
(see Table 23-3)

• Removed SPI Interrupt Vectors for Various Offsets table (Table 23-4)
• Added Section 23.3.2 “Buffer Modes”
• Added a paragraph that provides details on the MSSEN bit in Section 23.3.3.1 “Master

Mode Operation”
• Added two bullets that provide details on the FRMSYPW and FRMCNT bits in Section

23.3.6 “Framed SPI Modes”
• Added two paragraphs that provide details on the STXISEL<1:0> and SRXISEL<1:0> bits

in Section 23.4 “Interrupts”
• Added a paragraph on SPI1 ISR for devices with Enhanced Buffering mode after

Example 23-4 in 23.4.1 “Interrupt Configuration”
• Added SPI1 ISR Code Example for Devices With Enhanced Buffering mode (see

Example 23-5).
• Removed Section 23.8 “I/O Pin Control”
© 2009 Microchip Technology Inc. DS61106F-page 23-37

PIC32MX Family Reference Manual
NOTES:
DS61106F-page 23-38 © 2009 Microchip Technology Inc.

	Section 23. Serial Peripheral Interface (SPI)
	23.1 Introduction
	Table 23-1: SPI Features
	23.1.1 Normal Mode SPI Operation
	Figure 23-1: Typical SPI Master-to-Slave Device Connection Diagram
	Figure 23-2: Typical SPI Slave-to-Master Device Connection Diagram

	23.1.2 Framed Mode SPI Operation
	Figure 23-3: Typical SPI Master, Frame Master Connection Diagram
	Figure 23-4: Typical SPI Master, Frame Slave Connection Diagram
	Figure 23-5: SPI Module Block Diagram

	23.2 Status and Control Registers
	Table 23-2: SPI SFR Summary
	Register 23-1: SPIx CON: SPI Control Register(1,2,3)
	Register 23-2: SPIxSTAT: SPI Status Register(1)
	Register 23-3: SPIxBUF: SPI Buffer register
	Register 23-4: SPIx BRG: SPI Baud Rate Register(1,2,3)

	23.3 Modes of Operation
	23.3.1 8-Bit, 16-Bit, and 32-Bit Operation
	23.3.2 Buffer Modes
	23.3.3 Master and Slave Modes
	Figure 23-6: SPI Master/Slave Connection Diagram
	Example 23-1: Initialization Code for 16-Bit SPI Master Mode
	Figure 23-7: SPI Master Mode Operation in 8-Bit Mode (MODE32 = 0, MODE16 = 0)
	Example 23-2: Initialization Code for 16-Bit SPI Slave Mode
	Figure 23-8: SPI Slave Mode Operation in 8-Bit Mode with Slave Select Pin Disabled (MODE32 = 0, MODE16 = 0, SSEN = 0)
	Figure 23-9: SPI Slave Mode Operation in 8-Bit Mode with Slave Select Pin Enabled (MODE32 = 0, MODE16 = 0, SSEN = 1)

	23.3.4 SPI Error Handling
	23.3.5 SPI Receive-Only Operation
	23.3.6 Framed SPI Modes
	Figure 23-10: SPI Master, Frame Master Connection Diagram
	Figure 23-11: SPI Master, Frame Master (MODE32 = 0, MODE16 = 1, SPIFE = 0, FRMPOL = 1)
	Figure 23-12: SPI Master, Frame Slave (MODE32 = 0, MODE16 = 1, SPIFE = 0, FRMPOL = 1)
	Figure 23-13: SPI Master, Frame Slave Connection Diagram
	Figure 23-14: SPI Slave, Frame Master Connection Diagram
	Figure 23-15: SPI Slave, Frame Slave Connection Diagram

	23.3.7 SPI Master Mode Clock Frequency
	Equation 23-1:
	Table 23-3: Sample SCKx Frequencies

	23.4 Interrupts
	23.4.1 Interrupt Configuration
	Example 23-3: SPI Initialization with Interrupts Enabled Code Example
	Example 23-4: SPI1 ISR Code Example
	Example 23-5: SPI1 ISR Code Example for Devices With Enhanced Buffering Mode

	23.5 Operation in Power-Saving and Debug Modes
	23.5.1 Sleep Mode
	23.5.2 Idle Mode
	23.5.3 Debug Mode

	23.6 Effects of Various Resets
	23.6.1 Device Reset
	23.6.2 Power-on Reset
	23.6.3 Watchdog Timer Reset

	23.7 Peripherals Using SPI Modules
	23.8 Design Tips
	23.9 Related Application Notes
	23.10 Revision History

